Orthonormal bases for anisotropic α-modulation spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universitet Orthonormal bases for - modulation spaces

We construct an orthonormal basis for the family of bi-variate α-modulation spaces. The construction is based on local trigonometric bases, and the basis elements are closely related to so-called brushlets. As an application, we show that m-term nonlinear approximationwith the system in an α-modulation space can be completely characterized.

متن کامل

G-Frames, g-orthonormal bases and g-Riesz bases

G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator.

متن کامل

Orthonormal Bases for System Identiication

In this paper we present a general and very simple construction for generating complete orthonormal bases for system identiication. This construction provides a unifying formulation of orthonormal bases since the common FIR and recently popular Laguerre and Kautz model structures are restrictive special cases of our construction. A distinguishing feature of our construction is that it can gener...

متن کامل

Uncertainty Principles for Orthonormal Bases

In this survey, we present various forms of the uncertainty principle (Hardy, Heisenberg, Benedicks). We further give a new interpretation of the uncertainty principles as a statement about the time-frequency localization of elements of an orthonormal basis, which improves previous unpublished results of H. Shapiro. Finally, we show that Benedicks’ result implies that solutions of the Shrödinge...

متن کامل

Orthonormal bases for product measures

Let B be the Borel σ-algebra of R, and let B be the Borel σ-algebra of [−∞,∞] = R ∪ {−∞,∞}: the elements of B are those subsets of R of the form B,B ∪ {−∞}, B ∪ {∞}, B ∪ {−∞,∞}, with B ∈ B. Let (X,A , μ) be a measure space. It is a fact that if fn is a sequence of A → B measurable functions then supn fn and infn fn are A → B measurable, and thus if fn is a sequence of A → B measurable functions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Collectanea Mathematica

سال: 2011

ISSN: 0010-0757,2038-4815

DOI: 10.1007/s13348-011-0052-x